
bdp Documentation
Release 0.1

bvukobratovic

June 12, 2015

Contents

1 Contents 2
1.1 BDP short tutorial . 2

A simple block . 2
Block relative position . 3
Text alignment within block . 5
Settings text attributes . 5
The fig object . 6
path template . 7
The group template . 7

1.2 Rendering . 8
Command line . 8
From Python . 9

1.3 BDP Sphinx Extension . 9

2 Why BDP? 9

3 BDP features 10

4 Where to start? 10
4.1 Installation . 10
4.2 Read the documentation . 11
4.3 Checkout the examples . 11
4.4 Get involved . 11

5 Source codes for the examples 11

BDP (Block Diagrams in Python) aims to become a Python fronted for TikZ when it comes to drawing block diagrams
in order to facilitate the process. BDP wraps the TikZ statements into the Python objects so that users can describe
diagrams in pure Python. However, inserting raw TikZ in BDP is also possible. Figure below shows an BDP example
image which represents the BDP compilation process.

Figure can be rendered with the Python code provided below, which is also available in repository inside com-
pile_process.py BDP diagram. It can be rendered into the PNG with BDP via command line:

http://www.texample.net/tikz/
http://www.texample.net/tikz/
http://www.texample.net/tikz/
https://github.com/bogdanvuk/bdp/blob/master/doc/source/images/compile_process.py
https://github.com/bogdanvuk/bdp/blob/master/doc/source/images/compile_process.py

bdp compile_process.py -p

For a complete list of command line options please take a look at Rendering chapter.

1 Contents

1.1 BDP short tutorial

Block diagrams consist mainly of blocks connected by lines, hence mainly two BDP objects will be used for drawing
called block and path. All drawing objects in BDP are called templates. Templates carry descriptions of diagram
components in form of many attributes which can be accessed, modified or added as a regular Python object attributes.
New templates can be derived from the existing ones by calling them with a list of attributes that are be changed.
Finally, the templates can be rendered to the diagram by passing them to the fig object.

All examples shown in this tutorial can be found in the bdp/doc/source/images folder of the bdp source code.

A simple block

The following examples shows how to render a simple block with the text using BDP.

from bdp import *

New template called a_template derived from block with text_t attribute set
a_template = block(text_t='A Block')
Set the color attribute
a_template.color = 'red'

Render a_template
fig << a_template

Resulting in:

The block and templates derived from it, render to two node TikZ elements, one for the shape and the other for the text.
Many block template attributes are rendered directly to the options list of a TikZ node with the following convention:

node
option
form

Corresponding BDP
template setting

Description

op-
tion=value

template.option =
value

Set the desired value to the template attribute with the same name as the
desired node option

option template.option = True Set value of the template attribute of the same name as the desired node
option to the boolean True. To unset the option, set it to False.

option
with
spaces

tem-
plate.option_with_spaces

TikZ option with spaces correspond to the template attribute of the same
name with spaces replaced by underscores ‘_’

Some template attributes, however do not translate directly to the TikZ equivalents, and some of them are inferred in
certain situations. These attributes include:

At-
tribute

TikZ equivalent option Description

p at (p[0], p[1]) Determines the absolute position of the rendered
node

size minimum width=size[0], minimum
height=size[1]

Determines the size of the rendered node

align-
ment

– Determines the relative position of the text within a
block

border draw Determines whether the block template border is
drawn

Template a_template is rendered to the following two TikZ elements by the rules given above:

\node at (20.71pt, 6.47pt) [draw,minimum width=41.42pt,minimum height=12.94pt,color=red,rectangle] {} ;
\node at (20.71pt, 6.47pt) [align=center,text width=35.42pt,minimum width=41.42pt,minimum height=12.94pt] {A Block} ;

Block relative position

Next example shows how BDP facilitates the relative positioning of the blocks in diagram.

from bdp import *

t1 = block('T1')
t2 = block('T2').below(t1)
t3 = block('T3').left(t2)
t4 = block('T4').align(t1.e(0.2), prev().w(1))

fig << t1 << t2 << t3 << t4

Resulting in:

There are several helper methods used to position the blocks relatively to one another in diagram. The methods over,
right, left and below all have the same form:

template.method(other, pos=1)

These methods will position the template over, below, to the right or left of the passed other template. The nodesep
attribute of the other template determines the spacing that should be made between the templates. The nodesep
attribute value is multiplied by the passed pos argument.

The method align can be used to position two templates in such a way that their points (other and own) passed as
arguments to this method, become overlapped:

template.align(other, own)

The point relative to the template can be specified using helper methods: e, n, s and w

Method Description
n Coordinate system with origin in top-left point of the template, with x as primary coordinate
w Coordinate system with origin in top-right point of the template, with y as primary coordinate
s Coordinate system with origin in bottom-left point of the template, with x as primary coordinate
e Coordinate system with origin in top-left point of the template, with y as primary coordinate

When an int value is supplied to these methods as a parameter, the value will be interpreted as an absolute unit.
However, when a float value is supplied, it will be interpreted as a fraction of template’s size. The following example
shows how these methods can be used to determine the points relative to the template.

The function prev of the BDP package can be used to access the last template that has been derived in the script.

Text alignment within block

Text can be aligned within block using the alignment attribute. String of two characters are expected for the value of
the alignment, the first one for the vertical and the second for the horizontal alignment. The following figure shows
the available settings for the alignment attribute.

For the alignment setting, all combinations of the first and second character from the table below are valid.

First character Vertical text position Second character Horizontal text position
‘t’ Above the top edge ‘w’ Left aligned
‘n’ Below the top edge ‘c’ Center aligned
‘c’ Vertically centered ‘e’ Right aligned
‘s’ Above the bottom edge
‘b’ Below the bottom edge

Settings text attributes

Text is an attribute of the block template and it is itself a template. Text attributes can be thus accessed as tem-
plate.text.attr. Additionally as a shorthand, text attributes can be accessed as template.text_attr. The following exam-
ple shows two ways of accessing text attributes.

from bdp import *

b1 = block('Text1', text_color='red')
b2 = block(r'$\displaystyle\lim_{x\to\infty} (1 + \frac{1}{x})^x$').right(b1)

b2.text_font = r'\Large'
b2.text.color = 'blue'

fig << b1 << b2

Resulting in:

The fig object

The fig object accepts the BDP templates via ‘<<’ operator and memorizes their TikZ renderings in order to form
complete TikZ image. Additionally fig memorizes the template objects too, and can be used to reference them. The
templates can be referenced via their text attribute, or via order in which they were rendered. Both are done via
indexing operator. When referencing via template text, wildcards ‘*’ and ‘?’ can be used. The following example
demonstrates the two ways.

from bdp import *

fig << block('Text1')
fig << block('Text2').right(fig['Te*'])
fig << block(r'Something \\ else').below(fig[-1])
fig << fig['S*'](text_color='blue').left(fig[0])

Resulting in:

When adding a new template to the fig object that has the same text as the one added before, the number will be added
to the end of the new templates text to form its key in order to make it unique. The fig object has following attributes
that can be used to customize the TikZ rendering:

Attribute Description
grid Scale between the BDP units and points (pt) in TikZ
package Python set containing package names that should be imported via usepackage statement
tikz_library Python set containing tikz libraries that should be imported via usetikzlibrary statement
tikz_prolog Latex statements between the begin{document} and begin{tikzpicture}
options Global options for TikZ picture
tikz_epilog Latex statements between the end{tikzpicture} and end{document}

path template

The path template is used to render wires in BDP diagrams. The path template operates similarly to the block and text
templates. The difference is that it behaves as a container for a list of points that constitute a path and a list of line
routing options stored in route attribute.

from bdp import *

fig << path((0,0), (1,1), (2,2), route=['--', '-|'])
fig << path(fig[-1][0] + p(3,0), poff(1,1), poff(1,1), routedef='|-', style='<->', color='red')

Resulting in:

If route contains less items than there are point pairs, it is padded with value supplied to the routedef attribute.

The path template can also use new arrays.meta library (TeX Live 2014 contains the library out of the box) via cap
template.

from bdp import *

fig << path((0,0), (5,0), style=('<', cap(width=0.8, length=0.8, open=True)))
fig << path((0,2), (5,2), style=('<', cap(type='Stealth', width=1.2, length=2)), line_width=0.5, color='blue')
fig << path((0,4), (4,6), (6,6), routedef='-|', style=('', cap(width=1, length=1)), line_width=0.5, double=True, border_width=0.2, color='red')

Resulting in:

The group template

The group template behaves completely identical to the fig object when it comes to adding new templates to it and
referencing them (they share a common superclass). Please refer to chapter The fig object. Furthermore block, shape
and text templates have the same grouping functionality since they derive from group template, so this chapter applies
to them as well. The group is a template and as such can be rendered. When a group is rendered to a fig, all its elements
are rendered as well. When a group position is changed, the position of all its elements is shifted as well.

Important attribute of the group template is called group as well. When it is set to ‘tight’ (which is default for the
group template), group size and position is recalculated whenever a new element is added in such a way that the group
tightly encompass its all elements. When group attribute is set to None (which is default for*block*, shape and text
templates), position and size of the group is independant of the size and position of its elements.

Resulting in:

images/group_example.png

1.2 Rendering

Command line

BDP package can be run from command line to render the images of the BDP diagrams described in Python.

Depending on the extension of the output file, BDP will generate either PDF or PNG. If output file is not specified, it
will have the same name as the input, and generated extension will depend on the [-p] argument value.

usage: bdp [-h] [-o OUTPUT] [-d OUTDIR] [-p] [-c] [-r R] input

Positional arguments:

input Input BDP file

Options:

-o=, --output= Output PDF or PNG file

-d=, --outdir= Output directory

-p=False Render PNG

-c=False Clear intermediate files

-r Number representing DPI resolution of the generated PNG

From Python

For rendering a BDP figure from the Python script, the render_fig() function can be used.

bdp.render.render_fig(fig, fout=None, outdir=None, options={})
Renders the BDP figure to PDF or PNG via Latex

Parameters

• fout (str) – Output PDF or PNG file

• outdir (str) – Output PDF or PNG file

• options (dict) – Dictionary of additional options: ‘c’, ‘p’ and ‘r’. Please take a look at
command line arguments for additional info.

1.3 BDP Sphinx Extension

BDP package comprises an extension for embedding BDP diagrams in Sphinx documentation. The extension intro-
duces a singled directive bdp which can be used to either embed BDP diagram from external file, or render the supplied
BDP description. The bdp directive is a subclass of the figure directive, so all the options of the figure directive can
also be applied to the bdp directive. In addition :caption: option can be used to specify the diagram caption.

Specifying an external file:

.. bdp:: images/example_bdp.py
:caption: This is an example BDP diagram

Suplying a BDP description inline:

.. bdp::
:caption: This is an example BDP diagram

fig << block('Example')

fig << block('BDP')
fig << block('diagram')

2 Why BDP?

BDP brings following benefits:

• Diagram description in Python which should render it more readable

• Step-by-step debugging of the diagram description

• Use the tools and design environments available for Python development (debugging, code completion, refac-
toring, documentation utilities...)

• Use vast Python library of packages

3 BDP features

BDP package comprises:

• Python classes that wrap the Tikz statements

• Class for rendering PDF and PNG images from the Python description

• Shell entry point for rendering BDP images from command line

• Sphinx extensions for embedding BDP images into the Sphinx documents

Image below is a more complex example, which shows how power of Python programming can be used to generate
diagrams with BDP. Image shows an UML-like diagram of few major BDP templates.

Figure can be rendered with the Python code provided below.

4 Where to start?

4.1 Installation

BDP package currently supports only Python 3. Following are alternative ways to install BDP.

Install BDP using pip:

pip3 install bdp

Install BDP using easy_install:

easy_install3 bdp

Install BDP from source:

python3 setup.py install

BDP requires TeX Live, which could be installed on a Debian or a Debian-derived systems, with:

sudo apt-get install texlive

For converting PDF to PNG, pdftoppm, pnmcrop and pnmtopng are needed, which could be installed on a Debian or
a Debian-derived systems, with:

sudo apt-get install poppler-utils
sudo apt-get install netpbm

4.2 Read the documentation

Start with the short tutorial BDP short tutorial

4.3 Checkout the examples

BDP images used in documentation are located in the images repository documentation folder.

4.4 Get involved

Pull your copy from github repository

5 Source codes for the examples

https://github.com/bogdanvuk/bdp/tree/master/doc/source/images
https://github.com/bogdanvuk/bdp

Listing 5.1: BDP description of the compilation process diagram.
from bdp import *

block.size=(6,3)
block.nodesep=(3,3)

BDP = block(r"BDP", alignment='nw', group='tight', group_margin=p(1,1.5), dashed=True)
fig << block(r"Python \\ Description")
BDP['tikz'] = prev(r"TikZ \\ Renderer").right()
BDP['pdf'] = prev(r"PDF \\ Renderer").below()
BDP['png'] = prev(r"PNG \\ Renderer").below()
fig << prev(r"TeX Live", size=(6,9)).right(BDP['tikz'])
fig << block(r"pdftoppm \\ pnmtopng").below(fig['Te*'])

fig << BDP

cap.length = 1
cap.width = 1
path.line_width = 0.5
path.double = True

fig << path(fig['Pyt*'].e(0.5), BDP['tikz'].w(0.5), style=('',cap))
fig << path(fig['Tik*'].s(0.5), fig['PDF*'].n(0.5), style=('',cap))
fig << text('TeX').align(fig[-1].pos(0.5), prev().w(0.5, -0.1))

fig << path(fig['PDF*'].s(0.5), fig['PNG*'].n(0.5), style=('',cap))
fig << text('PDF').align(fig[-1].pos(0.5), prev().w(0.5, -0.1))

fig << path(fig['PNG*'].s(0.5), poffy(3), style=('',cap))
fig << text('PNG').align(fig[-1].pos(0.9), prev().w(0.5, -0.1))

fig << path(BDP['tikz'].e(0.5), poffx(3), style=(cap,cap))
fig << path(fig['PDF*'].e(0.5), poffx(3), style=(cap,cap))
fig << path(fig['PNG*'].e(0.5), poffx(3), style=(cap,cap))

Listing 5.2: UML-like diagram of few major BDP templates.
from bdp import *
from bdp.group import Group
import inspect

def fill_group(group, fields, template):
for name,text in fields:

text = text.replace('_', '_')
try:

group[name] = template(text).align(group[-1].s())
except IndexError:

group[name] = template(text).align(group.n())

def uml_for_obj(obj, parent=object):

extract methods and attributes for diagram
attrs = [(k, '+' + k) for k in sorted(obj.__dict__) if (k[0] != '_') and (not hasattr(parent, k))]
methods = [(k, '+' + k[0] + '()')

for k in inspect.getmembers(obj, predicate=inspect.ismethod)
if (k[0][0] != '_') and (not hasattr(parent, k[0]))]

populate BDP blocks
uml = block(r'\textbf{' + obj.__class__.__name__ + '}', alignment='tc', border=False, group='tight')
field = block(size=(7,None), alignment='cw', border=False, text_margin=(0.2,0.1))

uml['attrs'] = block(group='tight').align(uml.n())
fill_group(uml['attrs'], attrs, field)

uml['methods'] = block(group='tight').align(uml['attrs'].s())
fill_group(uml['methods'], methods, field)

return uml

block = block(nodesep = (4,2))

generate UML components
element_uml = uml_for_obj(group(), Group())
shape_uml = uml_for_obj(shape(), group())
block_uml = uml_for_obj(block(), shape())
text_uml = uml_for_obj(text(), group())

organize components in the diagram
shape_uml.right(element_uml).aligny(element_uml.n(), shape_uml.w(-1.0))
text_uml.below(shape_uml).aligny(element_uml.s(), text_uml.w(2.0))
block_uml.right(text_uml).aligny(midy(text_uml.n(), shape_uml.n()))

render the components
fig << element_uml << shape_uml << block_uml << text_uml

generate and render the wiring
fig << path(text_uml.w(0.5), element_uml.e(0.6), style='-open triangle 45')
fig << path(shape_uml.w(0.5), element_uml.e(0.4), style='-open triangle 45')
fig << path(block_uml.w(0.5), shape_uml.e(0.4), style='-open triangle 45')
fig << path(block_uml['attrs']['text'].e(0.5), poff(1,0), text_uml.e(0.5), style='open diamond-', routedef='|-')

Index

R
render_fig() (in module bdp.render), 9

15

	Contents
	BDP short tutorial
	A simple block
	Block relative position
	Text alignment within block
	Settings text attributes
	The fig object
	path template
	The group template

	Rendering
	Command line
	From Python

	BDP Sphinx Extension

	Why BDP?
	BDP features
	Where to start?
	Installation
	Read the documentation
	Checkout the examples
	Get involved

	Source codes for the examples

